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Abstract

In this project a topology optimization framework for designing periodic viscoplastic mi-
crostructures under finite deformation has been developed. Microstructures with tailored
macroscopic mechanical properties, i.e. maximum viscoplastic energy absorption and pre-
scribed Poisson’s ratio, are designed by performing numerical tests of a single unit cell
subjected to periodic boundary conditions. The applicability of the framework is demon-
strated by several numerical examples of optimized two-dimensional continuum structures
exposed to multiple load cases over a wide range of macroscopic strains. The results has
been presented at ”The 13th World Congress in Computational Mechanics, New York,
July 2018” and the results are currently being prepared for journal publication.

1. Introduction

Since the work by [1], topology optimization has undergone rapid development and
been applied to a variety of physical problems. Specifically, topology optimzation based
material design methods based on the inverse homogenization approach have demonstated
the possibility to create novel materials with enhanced properties, through optimal mate-
rial distribution of the material microstructure. Examples of these include linear elastic
materials with negative Poisson’s ratio [2], negative thermal expansion [3].

In the design of such materials, a common simplification in the topology optimiza-
tion formulation is to use linearized theory, e.g. linear elasticity and assume small strain
structural response. This means that materials that exhibit irreversible processes and are
exposed to large deformations cannot be designed. To specify, although linear assump-
tions suffice for many structural optimization problems of materials that are subject to
moderate macroscopic strain levels, they may fail to accurately model the microstructural
material response, as moderate macroscopic strains generally give much higher local strains
at the microscopic scale. To predict microstructural response, nonlinear finite strain theory
should therefore be incorporated in topology optimization.

When accounting for geometrical nonlinearities of the material microstructure, how-
ever, the evaluation of the homogenized material properties become more demanding. For
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these nonlinear cases, multiscale approaches are required to account for heterogeneity in
the microstructure. Such multiscale homogenization methods are cumbersome due to the
iterative nonlinear analyis and the extensive computational effort needed [4]. To solve
coupled multiscale topology optimization problems for nonlinear elastic structures, one
possibility is to apply efficient parallel programming, as presented in [5], but although
efficient, this method is still computationally intense.

In recent works [6], alternatives to nonlinear homogenization methods has been pro-
posed. These methods use numerical tensile experiments for calculating the effective ma-
terial response, and use topology optimization to achieve prescribed nonlinear properties
under finite deformation. In this way, the computational effort required for the analysis
is significantly reduced, since the entire macroscopic structure is represented by a single
representative volume element (RVE).

Of the developed topology optimization methods, few consider material design problems
related to inelastic material response. Contributions incorporating small strain elastoplas-
tic formulations include work that use topology optimization to obtain conceptual designs
of energy absorbers for crashworthiness, modeled with 2D-beam elements [7]. Protective
systems with maximum energy dissipation for structures subject to impact loading have
also been designed by [8], where a transient elastoplastic topology optimization formula-
tion is used. Elastoplastic material modelling has further been used in [9] for optimizing
steel-reinforced concrete structures and in a recent study, [10] presents a topology opti-
mization routine based on finite strain plasticiy. Thus, to date, most topology optimization
frameworks on material nonlinearities focus on homogeneous materials, or heterogeneous
materials with given micostructures, whereas research on topological material design for
inelastic material properties remains scarce.

To generate optimal topologies of periodic microstructures, for maximum energy dis-
sipation and for specific Poisson’s ratio, we present a finite strain viscoplastic topology
optimization framework. The constitutive model is based on finite strain isotropic harden-
ing viscoplasticity. Macroscopic nonlinear material properties are evaluated by numerical
tensile- and shear tests of a single unit cell that is subjected to periodic boundary con-
ditions. Similar to the work in [11] we include rate-dependent finite strain effects into
topology optimization, but we restrict ourselves by excluding dynamic inertial effects.

2. Problem formulation

The constitutive model is based on isotropic hyperelasticity and isotropic hardening
viscoplasticity. Since we use finite strains, multiplicative split of the deformation gradient
is employed. The specific viscoplastic power, ẇvp, is obtanied from thermodynamics and
it can be integrated to yield the total plastic work, i.e.

W vp =

∫ T f

0

∫

Ωo

ẇvpdV dt, (1)

where T f is the terminal time and Ωo the design domain.
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The mechanical balance laws are spatially discretized by means of the finite element
method and the constitutive equations are integrated with the backward Euler scheme.
The continuous non-dimensional volume fraction field c ∈ [0, 1] is the design variable and
it describes the amount of material for a material point, where regions filled with material
are defined by c = 1 and void regions are identified by c = 0. The variation of the
continuous volume fraction field c is reguralized through the Helmholtz’ partial differential
equation filtering technique which we solve using using finite elements.

3. Topology optimization

The objective is to design a material microstructure with maximum viscoplastic energy
absorption capability, W vp. We also consider constraints on the displacement during the
loading. For a longitudinal loading test where ūxx is prescribed, the displacement constraint
is imposed using a secant measure of Poisson’s ratio, i.e.

The topology optimization problem is to find a design φ that solves
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where g1 reprsents the constrain on the Poisson’s ratio and where g2 represents the volume
constraint.

The optimization problem is solved using gradients of the objective function and the
constraints to form a convex approximation of the optimization problem. We therefore
perform a sensitivity analysis in each optimization iteration, and as the number of design
variables outnumber the number of constraints, we use the adjoint method [12].

4. Numerical examples

To show the effectiveness of the presented framework, we present the solution of differ-
ent topology optimization design problems. The primal viscoplasticity problem is solved
with an adaptive time stepping where the time increments used to perform the sensitivity
analysis are consistent with those used to solve the primal problem.

First, we consider a tensile loading scenario, where simultaneous longitudinal and trans-
verse displacement boundary conditions are applied, i.e. εxx = εyy = 1%. The volume frac-
tion is 35%. Quarter symmetry within the design is enforced, ensuring zero shear forces.
The performance of the four designs using different random initial conditions is compared
in Fig. 1 which reveal that several local minima to this optimization problem exist. In
Fig. 1, the energy absorption during the optimization is also shown, where it is clear that
the four topological different designs have a similar performance, and that the objective
function has been maximized.
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Figure 1: Viscoplastic work versus optimization iteration for different optimized designs.

Next, we increase the load magnitude and consider two separate load cases; longitudinal
and transverse tensile loading, prescribing the macro strain levels εxx = 5% and εyy = 5%,
respectively. The aim is now to maximize the total energy W absorbed due to the external
load. As shown in the previous examples, the optimized designs are symmetric in the axial
and diagonal directions due to the initial design. To ease the computational effort, we
enforce symmetry along the axial and diagonal axes.

Four designs are shown in Fig. 2, optimized for maximum total energy absorption W ,
where the target Poisson’s ratio is ν∗ = 0. The optimization problems are initiated with
the same random design and are subjected to the prescribed macroscopic strain εxx = 5%.
The results are obtained using increasing filter length scale.

Conclusions

We have established a topology optimization framework for designing periodic mi-
crostructural materials with maximum viscoplastic energy absorption. Materials that pos-
sess near strain-independent Poisson’s ratio have been designed. Sensitivities required to
solve the optimization problem are obtained using the adjoint method. The finite strain
viscoplastic effects on the designs are shown by simulation of several macroscopic load
cases.

The unit cell that characterizes the design domain has been discretized with 3D finite
elements. This formulation enables a smooth transition to large-scale 3D problems by re-
laxation of the plane strain assumption. In future work, we will apply parallel programming
to the framework to efficiently solve such large-scale problems.
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a)

b)

c)

d)

Figure 2: Left column: undeformed designs optimized for the prescribed target ν∗ = 0 with axial and
diagonal symmetry enforced, and 5% prescribed macroscopic strain. Right column: arary of 3 × 3 unit
cells. The filter length scale is a) lo = 0.0175, b) lo = 0.0200 c) lo = 0.0210, d) lo = 0.0250.
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