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Abstract

Detection of the blade root moment sensor failures is an important problem for fault tolerant
individual pitch control, which plays a key role in reduction of uneven blade loads of large wind
turbines. A new method for detection of the blade root moment sensor failures which is based
on variations induced by a vertical wind shear is described in this report. The detection is
associated with monitoring of statistical properties of the difference between amplitudes of the
first harmonic of the blade load, which is calculated in two different ways. The first method
is based on processing of the load sensor signal, which contains a number of harmonics. The
first harmonic is recovered via least squares estimation of the blade load signal with harmonic
regressor and SDD (Strictly Diagonally Dominant) information matrix. The second method is
a model-based method of estimation of the first harmonic, which relies on the blade load model
and upwind speed measurements provided by multibeam LIDAR. This is a new application
for future LIDAR-enabled wind turbine technologies. Moreover, adaptation of the load model
in a uniform wind field is proposed. This adaptation improves accuracy of the load estimation
and hence the performance of the blade load sensor failure detection method.
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1 Motivation and Description of the Detection Method

1.1 Individual Pitch Control and Unreliable Blade Load Measurements

IPC (Individual Pitch Control) is the only suitable tool for mitigation of uneven blade loads [1] -
[9]. IPC reduces maintenance costs and increases efficiency and lifetime of the turbine components
through significant contribution to the load reduction. IPC is based on the blade load measurements
provided by strain gauge resistors, where the resistance changes in the case of loading. The lifetime
of the strain gauge is normally not very long and the main sources of the errors are the following: (1)
sensitivity to the temperature variations which results in a zero load drift, temperature distribution
over the material and thermal stresses ; (2) transverse sensitivity ; (3) humidity which results in
variation in stiffness of the composite materials ; (4) strain cycling which introduces a zero shift ;
(5) fatigue of the material which results in a zero shift, change in gauge factor, and possible gauge
failure in fatigue ; (6) cable effects that might change the resistance, capacitance, insulation, and
screening.
The factors listed above together with many other factors is the reason for high failure rates of
blade load sensors. The failure rates are especially high for off-shore wind turbines due to severe
environmental conditions. An average failure rate is one failure per year. For wind turbines with
three blades, the failure rate is approximately three failures per year [10].
Performance improvement of the blade load sensor failure detection mechanism is a challenge in
the IPC system, which plays a key role in reduction of uneven blade loads of large wind turbines.
On the other hand, new laser sensor (LIDAR) technologies which are capable of measuring wind
speed at a distance in front of the turbine will be widely used in the future in a number of turbine
control loops aiming to performance improvement via integration of proactive capabilities. This
will result in LIDAR-assisted proactive turbine speed control, collective pitch angle control as well
as yaw and individual pitch control, see [11] - [14] for details. Preview information, provided by the
LIDAR usually results in a feedforward part which is properly integrated into the existing feedback
controller. Information provided by the LIDAR might also be used for fault detection purposes (so
far it was used for control only). LIDAR sensors are traditionally configured with a single beam.
New generation of LIDAR sensors are equipped with many beams at different angles providing
new opportunities for accurate estimation of incoming wind field [15],[16]. In particular, LIDAR-
enabled blade load estimation may result in a new class of blade load fault detection methods with
improved detection capabilities. This is a new application for future wind turbine technologies
based on multibeam LIDAR.
Notice that the load model driven by upwind speed measurements is suitable for estimation of
the first harmonic only, whereas load sensor signal contains a number of harmonics. Therefore
a reduction of uneven loads is more efficient for IPC, which is driven by the load sensor signal,
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provided that a pitch actuator is fast enough to counteract higher harmonics [8]. IPC which is
based on LIDAR measurements [9] is used in the system in the case of blade load sensor failure.
Information provided by LIDAR ensures fault tolerance of IPC as an ability of the system to
maintain control objectives, despite the occurrence of a failure in the blade root moment sensor.

1.2 Detection Method Based on Turbine Cycle Variations

A new method for detection of the blade root moment sensor failures which is based on a vertical
wind shear estimation is described in this report. Wind shear is almost always present in the wind
speed distribution, see Figure 2 in [9], which illustrates a vertical wind shear. Traditional detection
methods are usually based on monitoring of a change in mean value of the sensor signal (see [10]
for example), whereas turbine cycle variations act as a disturbance, leading to deterioration of the
detection performance and misdetection. This detection method is based on monitoring of the
turbine cycle variations and captures information, which was previously ignored. Assessment of
turbine cycle variations provides the basis for fast detection methods with respect to the methods,
which are based on monitoring of the mean value. Fast detection is especially efficient in the case
of drifting sensor failures.
The method is based on monitoring of the evolution of the first harmonic of the signal in the turbine
cycle loading, which appears due to the wind shear. Amplitude of the first harmonic is estimated
in two ways, which are described as follows:
(1) The first harmonic can be extracted from the blade root moment sensor signal, which contains
a number of harmonics and a measurement noise. A number of algorithms can be used for es-
timation of the first harmonic, taking into account a property of persistence of excitation of the
blade root moment sensor signal in the presence of the wind shear. This method is associated with
processing of the blade load signal using least-squares algorithm with harmonic regressor [17] - [21]
for estimation of amplitude of the first harmonic.
(2) LIDAR-enabled blade load estimation opens new opportunities for the model-based blade load
sensor fault detection. The first harmonic of the turbine cycle loading can be estimated using up-
wind speed measurements in multibeam configuration which is illustrated in Figure 1. This method
is referred as a model-based blade load estimation method, driven by upwind speed measurements.
Estimation of the first harmonic described above is based on two sensors with different measurement
principles, and therefore can be combined for a high performance failure detection. The detection
is associated with monitoring of statistical properties of the difference between amplitudes of the
first harmonic calculated in two different ways.
Notice that load sensors (strain gauges), located on the fixed part of the nacelle, which measure tilt
and yaw nacelle moments, could also be used for estimation of the blade loads via inverse Coleman

3



transformation as it is described in [10]. The same measurement principle associated with esti-
mated and measured blade loads together with inaccuracies in Coleman transformation (see [22]
for details) result in poor detection performance in this case.
The fault detection method proposed in this report is associated with a change detection, where
the change in parameters of distribution of the difference between amplitudes of the first harmonic
identifies the fault.
Three types of faults can be detected: (1) abrupt jump faults with a step-like behavior, where
the signal changes abruptly from the nominal value to a faulty value ; (2) incipient faults with a
drift-like behavior, where the signal gradually changes from the nominal value to a faulty value
; (3) intermittent faults, where the signal changes from the nominal value to a faulty value, and
returns to the nominal value after some time.
All three types of the faults can be identified via detection of the changes in the parameters of
distribution of the difference between the amplitudes.
Notice that this report does not cover all types of faults which may appear in wind turbine. Addi-
tional fault scenarios together with a benchmark wind turbine model are presented in [23].

2 New Detection Method of the Blade Load Sensor Fail-

ures

2.1 Model of the Flapwise Bending Moment: Accounting for Higher
Harmonics

Two wind speeds, measured at different heights, see Figure 1, is the input to the turbine load
model. The periodic individual blade wind speeds Vi, i = 1, 2, 3, defined at the center of each blade
in rotating frame can be calculated using these two wind speeds (as boundary conditions), which
together with the turbine rotor speed ωr are associated with the individual blade tip-speed ratio
λi as follows:

λi =
ωrR

Vi

(1)

where R is the rotor radius. Individual blade wind speeds have a fundamental frequency associated
with a turbine rotational speed. The individual blade wind speed together with the pitch angle and
rotor speed define the individual blade flapwise bending moment Mf,i, which can be presented as
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FIG 1: Multibeam LIDAR measurements of two wind speeds V1 and V2 (located at the heights

which are equal to the hub height H with the half of the blade length
L

2
added/subtracted) at a

distance D in front of the turbine. A periodic loading appears on the blades with the rotation of the
turbine rotor in the presence of a vertical wind shear, which is associated with a change (increase)
in wind speed with height, V1 > V2. This periodic loading has a number of harmonics and a first
harmonic is associated with the frequency of the wind turbine rotational speed.
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an average value and a periodic component induced by wind shear. This component contains the
first harmonic of the turbine rotational frequency and high order harmonics and can be described
as follows:

Mf,i = A0 +
d∑

h=1

Ah,i cos (hωrt) (2)

where A0 = A0(V, ωr, βc) is the average value of the flapwise bending moment, and Ah,i =
Ah,i(V1, V2, ωr, βc) is the amplitude of the harmonic h, where d is a total number of harmonics.
The average value of the flapwise bending moment depends on the hub wind speed V , turbine
speed ωr and collective pitch angle βc. The amplitudes depend on two winds speeds V1 and V2,
which characterize wind shear, see Figure 1, turbine speed and collective pitch angle.
Notice that wind shear consists of vertical and horizontal components. A vertical component is
accounted only in this model as the most pronounced component of the wind shear. A horizon-
tal component, which is not accounted in this model is treated as stochastic variations of the
amplitudes.

2.2 Processing of Persistently Exciting Blade Root Moment Sensor
Signal: Amplitude Estimation

Discrete-time measurements of individual blade flapwise bending moment Mfk (where index i is
dropped for simplicity) with d harmonics can be written as follows:

Mfk =
d∑

h=1

Ahk cos (hωrkk) + ξk = φT
k θ∗k + ξk (3)

where φk is the harmonic regressor and θ∗k is the vector of unknown parameters defined as follows:

φT
k = [cos (ωrkk) cos (2ωrkk)

cos (3ωrkk) ... cos (dωrkk)] (4)

θT∗k = [A1k A2k A3k ...Adk] (5)

where ωrk is a discretized turbine speed, ξk is a zero mean white Gaussian measurement noise,
k = 1, 2, ... is the step number. Notice that the average value of the flapwise bending moment
can be easily estimated using a low pass filter and subtracted from the individual blade flapwise
bending moment signals. Therefore the signal (3) contains the periodic component only. Least-
squares estimate

θTk = [Â1k Â2k Â3k ...Âdk] (6)
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of unknown parameter θ∗ in a window of a size N , which is moving in time, can be written as
follows [19]:

θk = [
k∑

j=k−N+1

φjφ
T
j ]

−1

k∑
j=k−N+1

φjMfj (7)

and the first harmonic Mffk is recovered according to the relation:

Mffk = Â1k cos (ωrkk) (8)

where Â1k is estimated amplitude of the first harmonic.

The matrix
k∑

j=k−N+1

φjφ
T
j is called as information matrix and it is an SDD matrix for a sufficiently

large window size [20]. SDD matrix can easily be inverted making algorithm computationally ef-
ficient and implementable. Moreover, estimated parameters can also be rapidly and accurately
calculated without matrix inversion [21].
Estimation problem stated above is a challenging estimation problem due to time varying am-
plitudes and rotational speed. The accuracy of estimation can be improved via reduction of the
window size for fast varying parameters. The properties of the information matrix based on har-
monic regressor have not been studied for a sufficiently small window size N . The case, where
the window size is not large enough for information matrix to be an SDD matrix is considered in
Appendix. A positive definiteness of the information matrix based on harmonic regressor with four
components is shown in this Appendix using partitioning method.
A measurement noise together with non-stationary nature of estimated parameters and turbine
rotational speed are the main obstacles to high performance estimation of the first harmonic of the
flapwise bending moment in real-time. Post-processing estimation, where all the signals are saved
in the buffer and future values of the measured signal are available shows significant improvement
with respect to real-time estimation, see Figure 2.

2.3 Model-Based Estimation of the Amplitude of the First Harmonic

Two wind speeds which are measured at a distance in front of the turbine (see Figure 1) are used
for model-based estimation of the amplitude of the first harmonic of blade load. The wind speeds
which are expected to arrive to the turbine site after some time can be calculated using a classical
frozen turbulence assumption [24]. Expected periodic individual blade wind speeds Vie, i = 1, 2, 3
defined at the center of each blade in rotating frame can be calculated using two expected wind
speeds. Expected periodic individual blade wind speeds together with turbine speed and pitch angle
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FIG 2: Reconstruction of the first harmonic from a noisy blade load signal in post processing.
Measured signal of the flapwise bending moment, which contains four harmonics is plotted with a
blue line. The first harmonic is plotted with a green line, and estimate of this harmonic is plotted
with a red line. The flapwise bending moment is presented in normalized unit.
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are the inputs to the look-up table, which estimate individual blade flapwise bending moments as
follows:

Mfm,i = f(Vie, ωr, βc) (9)

This model is suitable for estimation of first harmonic of turbine rotational frequency only. This
harmonic appears in the load in the presence of the wind shear. Amplitude of this harmonic Â1mk

is estimated using least squares method.
Notice that two techniques of estimation of the first harmonic described above are based on sensors
with different measurement principles and therefore can be combined for high performance failure
detection.

2.4 Monitoring of the Amplitude of the First Harmonic: Outlier De-
tection

Blade load sensor failure detection mechanism is driven by two sensors: (1) LIDAR, which measures
two wind speeds at a distance in front of the turbine, and (2) blade strain gauges, which measure
a flapwise bending moment. A chart of the detection mechanism is presented in Figure 3. Two
amplitudes of the first harmonic of rotational frequency are estimated and compared. A difference
between the amplitudes ∆Ak = Â1mk− Â1k, which is calculated in two ways is normally distributed
with a zero mean value for healthy system. The parameters of such distribution can be identified
using a sufficiently large number of measured points in the case of healthy system. The fault detec-
tion is associated with a change detection, where the change of the parameters of this distribution
identifies the fault.
A slow drift of the amplitude of the first harmonic of the strain gauge signal is shown as an example
in Figure 4 with corresponding distributions plotted in Figure 5. Such a drift may appear due to
the fatigue of the material in the cycle loading or humidity change, which results in a change of
gauge factor, see Section 1.1 for all types of the faults.
Each sample of the difference between amplitudes should belong to a parent distribution, asso-
ciated with healthy system. The fault is detected, if the sample is identified as an outlier1. An
outlier is detected via Two Sample t-Test, where a hypothesis that a mean value of the distribution
that describes healthy system is equal to suspected outlier, which is treated as a mean value of a
virtual distribution [25], is taken as a null hypothesis. This hypothesis is tested against alternative
hypothesis that the observation point does not belong to parent distribution, that describes healthy
system. The failure is detected, if the null hypothesis is rejected in favor of alternative hypothesis.
A slow drift can also be detected via monitoring of the fluctuations of the mean value of the differ-
ence between the amplitudes. This monitoring is performed in a window of a certain size, which

1outlier is an observation point, which is distant from other observations

9



LIDAR

BLADE

LOAD MODEL

SENSOR

FAULT

FILTER

MODEL-BASED LOAD ESTIMATION

SIGNAL PROCESSING PART

STRAIN GAUGE

LOOK-UP TABLES

DIFFERENCE IN AMPLITUDES

FIG 3: Detection of the blade load sensor faults.

is moving in time. Notice that the difference in mean values should be statistically significant for
reliable detection of the fault. This can be verified using Two Sample t-Test, where a significance
level represents trade-off between the fastness and detection performance.

3 Adaptation of the Load Model

The performance of the detection mechanism, described above depends on the performance of the
load model, which is a mean value model that describes the flapwise blade root bending moment,
see Figure 3. The model of the flapwise bending moment is presented in the form of look-up tables
(the surfaces in three dimensional space) with the tip-speed ratio and blade pitch angle as input
variables. The mean value of the bending moment calculated via look-up tables should coincide
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FIG 4: A time chart of the amplitudes of the first harmonic of healthy system (the first subplot), and
failed system (the second subplot). Amplitudes of the first harmonic calculated using load model and
sensor signal are plotted with black and red lines respectively. Incipient fault associated with a slow drift
occurs in the step number 700. Histograms of healthy and failed systems are plotted in Figure 5.
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FIG 6: The flapwise bending moment is presented as a surface with tip-speed ratio and pitch
angle as input variables for a certain turbine speed [14]. Mean values of measured flapwise bending
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with the outputs of the blade load sensors in a uniform wind field for healthy system. Deviations
between the load sensor measurements and output of the model necessitate adaptation of the
model, provided that the wind field is uniform. The uniformity of the wind speed across the rotor
swept area is detected by comparison of the blade load sensor signals of all three blades and/or by
LIDAR measurements. Average values of the load calculated using blade load sensors in a number
of working points are memorized for adaptation of look-up tables. The data should be acquired over
a relatively large time segment to ensure statistical consistency. Notice that additional requirements
may be imposed on input data to avoid erroneous adaptation. If new data is available in a certain
operating region only (for example at low wind speeds and for small pitch angles), then the part
of the surface parameters is adapted (for example gradient in pitch angle direction). Adaptation
of the look-up table is associated with a motion of the surface in three dimensional space, see
Figure 6. The position and the orientation of the surface in three dimensional space change only
after adaptation, which in turn, allows for a prediction of the bending moment for a wide range of
operating variables. This adaptation method was developed first in automotive applications [25]
and was successfully applied to turbine model validation with fusion of simulation and measurement
data on Big Glenn wind turbine, located outside Gothenburg, Sweden [26].

4 Conclusion

Increasing demands on operational reliability, safety and power output of wind turbines necessitate
the development of new high performance fault detection techniques. High performance fault
detection is directly associated with predictive maintenance [27], where a component is replaced
before the system breaks down, which implies significant savings as well as increases power output.
Moreover, high performance fault detection methods are the basis for novel fault tolerant turbine
control strategies, where a fault is predictively detected, and the turbine is switched to a safe
operation mode to prevent damages, until a maintenance crew arrives to the turbine site. This
extends the turbine operation time and increases the power output. Fault tolerance is associated
with an ability of the turbine control system to maintain control objectives, despite the occurrence of
a fault [28] - [30]. New blade load sensor fault detection technique proposed in this report is the basis
for high performance fault tolerant IPC. This is also a new application for future multibeam LIDAR
technology, which is utilized now in the preview based control only. New detection algorithms can
be easily integrated into existing IPC functionality aiming for improvement of uneven load reduction
for large turbines.
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Appendix

Positive Definiteness of Information Matrix for Insufficiently Large Win-
dow Size: Partitioning Method for the Case of Four Harmonics

Consider the following harmonic regressor:

φT
k = [cos (ωk) cos (2ωk) cos (3ωk) cos (4ωk)] (10)
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where ω is a constant rotational frequency and hω with h = 2, 3, 4 are higher harmonics, k = 1, 2, ...
is the step number.
Consider the following information matrix calculated over the window of a size N :

G = GT =
N∑
k=1

φkφ
T
k =


g11 g12 g13 g14
g12 g22 g23 g24
g13 g23 g33 g34
g14 g24 g34 g44


Elements of the matrix G can be evaluated explicitly using the following relation:

N∑
k=1

cos (hωk) =
cos (

N + 1

2
hω) sin (

N

2
hω)

sin
hω

2

(11)

where h = 1, ..., 4. The first two elements of the first row of this matrix are presented below:

g11 =
N∑
k=1

cos2 (ωk) =
N

2︸︷︷︸
average part

+
sin (Nω) cos ((N + 1)ω)

2 sinω︸ ︷︷ ︸
periodic part

(12)

g12 =
N∑
k=1

cos (ωk) cos (2ωk) =

=
1

2

cos (
3(N + 1)

2
ω) sin (

3N

2
ω)

sin
3ω

2

+
1

2

cos (
N + 1

2
ω) sin (

N

2
ω)

sin
ω

2

(13)

All other elements of this matrix can be evaluated using similar arguments.
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4.1 Partitioning of Matrix G

Symmetric matrix G can be partitioned as follows:

G =

[
A B
BT C

]

where A =

[
g11 g12
g21 g22

]
, B =

[
g13 g14
g23 g24

]
and

C =

[
g33 g34
g34 g44

]
. Notice that the diagonal elements of the matrices A and C have periodic part

and average part
N

2
, whereas all other elements of matrices A,B and C have periodic parts only.

Matrix G becomes an SDD matrix for a sufficiently large window size N . Suppose that the window
size N is large enough for matrices A and C to be SDD matrices, but it is not sufficiently large for
matrix G to be an SDD matrix. The matrix G is positive definite if and only if the matrices A and
C −BTA−1B are positive definite matrices (see theorem 7.7.6 in [31]). Inverse of the matrix A can

be approximated as A−1 ≈ D =
2

N
I, when neglecting periodic part in matrix A, where I is the

identity matrix. The matrix BTB also has an average part that is proportional to the window size
N . This part is canceled by the diagonal elements of matrix D in the term BTA−1B. Therefore
there exists a large enough window size N such that the matrix C − BTA−1B is an SDD matrix.
Hence the matrix G is a positive definite matrix, since matrix A is also an SDD and positive definite
matrix. Notice that the matrix G is not an SDD matrix.
This technique of determination of positive definiteness of information matrix is illustrated via
numerical example in the next Section.

Numerical Example

Consider the following information matrix G based on the regressor (10) with ω = 0.0228 and the
window size N = 83:

G =


34.4747 16.2691 −1.9465 −4.8693
16.2691 46.5787 19.8127 −10.6043
−1.9465 19.8127 37.9209 22.3866
−4.8693 −10.6043 22.3866 42.5117


This matrix G is not an SDD matrix since the diagonal elements in the second and the third
rows are not larger than the sum of the magnitudes of all the other (non-diagonal) entries in the
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second and third rows. Nevertheless, the matrices A =

[
34.4747 16.2691
16.2691 46.5787

]
and C −BTA−1B =[

26.7629 26.5384
26.5384 40.0503

]
are positive definite and SDD matrices. Therefore the matrix G is a positive

definite matrix. Notice that the matrices A and C − BTA−1B are still positive definite (but not
SDD) matrices even for a sufficiently small window size N .

Publication Results of the Project

The following journal paper based on the results presented above was published :

Stotsky A., Blade Root Moment Sensor Failure Detection Based on Multibeam LIDAR for Fault-
Tolerant Individual Pitch Control of Wind Turbines, Energy Science & Engineering, vol. 2, N 3,
2014, pp.107-115.

The following paper was accepted for presentation on the 2014 IEEE 53-rd Annual Conference on
Decision and Control (CDC) to be held on the 15 - 17 of December, 2014 in J.W. Marriott Hotel
Los Angeles, CA, USA :

Stotsky A., High Order Algorithms in Robust Least-Squares Estimation with SDD Information
Matrix: Redesign, Simplification and Unification.
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